博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
top coder password题解
阅读量:5169 次
发布时间:2019-06-13

本文共 1602 字,大约阅读时间需要 5 分钟。

一个密码是由大小写字母与数字组成的序列。计算长度为N且含有至少L个小写字母,U个大写字母,D个数字的密码个数。(1<=N<=200000,0<=L,U,D<=n)。答案模

1,000,000,009

【输入格式】

第1行:1个整数N

第2行:1个整数L
第3行:1个整数U
第4行:1个整数D
【输出格式】
第1行:1个整数,表示答案。

本弱在考试时遇到这个题的时候,果断N^2骗分,正解神马的完全不知道。听了大神讲了之后,发现这个题的解法真是太精妙了。

首先,我们应该先把数字单独分离出来计算,把小写和大写字母放在一起比较容易处理。如果数字有x个,那么方案数就有f[N-x]*26^(N-X)*10^x*C(N,x),f[n]为字母(不区分大小写,不区分字母是否相同)为n个的方案数。

暴力计算f[n]的复杂度是n^2的,但本弱经过模拟样例,发现了一个规律:f[n]=2*f[n-1]+C(n-1,cnt)+C(i-1,L-1);

其中cnt的初值是L,每次cnt的值要+1

其实把f[n]展开成C的形式,再用杨辉三角就很好理解了。

本弱的代码如下:

#include<iostream>

#include<cstdio>
using namespace std;
typedef long long LLint;
const LLint MOD=1000000009LL;
const LLint MAXN=210000;
LLint U,D,N,L;
LLint Jie[MAXN],Jie_Ni[MAXN],P10[MAXN],P26[MAXN];
void Ex_Gcd(LLint a,LLint b,LLint &d,LLint &x,LLint &y){
    if(!b){
        d=a; x=1; y=0;
    }
    else{
        Ex_Gcd(b,a%b,d,y,x);
        y-=x*(a/b);
    }
}
void Init(){
    Jie[0]=1; Jie_Ni[0]=1; P10[0]=1; P26[0]=1;
    for(LLint i=1;i<=N;i++){
        Jie[i]=Jie[i-1]*i%MOD;
        LLint x,y,d;
        Ex_Gcd(Jie[i],MOD,d,x,y);
        Jie_Ni[i]=(x+MOD)%MOD;
        P10[i]=P10[i-1]*10LL%MOD;
        P26[i]=P26[i-1]*26LL%MOD;
    }
}
LLint Get_C(LLint Down,LLint Up){
    if(Up>Down) return 0LL;
    return (MOD+Jie[Down]*Jie_Ni[Up]%MOD*Jie_Ni[Down-Up]%MOD)%MOD;
}
LLint f[MAXN],Ans,cnt;
int main()
{
    scanf("%I64d%I64d%I64d%I64d",&N,&L,&U,&D);
    Init();
    for(LLint i=L;i<=L+U-U;i++)
        f[L+U]=(f[L+U]+Get_C(L+U,i)+MOD)%MOD;
    cnt=L;
    for(LLint i=L+U+1;i<=N-D;i++){
        cnt++;
        f[i]=(2*f[i-1]%MOD+Get_C(i-1,cnt)+Get_C(i-1,L-1)+MOD)%MOD;
    }
    for(LLint i=D;i<=N-L-U;i++)
        Ans=(Ans+f[N-i]*P26[N-i]%MOD*P10[i]%MOD*Get_C(N,i)%MOD+MOD)%MOD;
    printf("%I64d",Ans);
return 0;
}

转载于:https://www.cnblogs.com/Return-0/archive/2013/03/18/2966735.html

你可能感兴趣的文章
yii2 ActiveRecord多表关联以及多表关联搜索的实现
查看>>
搜狗输入法安装--ubuntu
查看>>
ps/2接口键盘的输入及显示
查看>>
Swift———a Glance(极客学院)笔记
查看>>
【poj3294-不小于k个字符串中最长公共子串】后缀数组
查看>>
java如何获取其它用户登录的真是IP地址
查看>>
Jquery通过指定层次关系获取元素
查看>>
c# for 和 foreach 的区别
查看>>
docfx (一)
查看>>
HashMap底层实现原理/HashMap与HashTable区别/HashMap与HashSet区别
查看>>
深度学习之前馈神经网络(前向传播和误差反向传播)
查看>>
IEnumerable<T>和IQueryable<T>区别
查看>>
(转)MFC界面风格
查看>>
Centos7 tmux1.6 安装
查看>>
二叉树(三)
查看>>
linux加密文件系统 fsck 无法修复一例
查看>>
【linux配置】VMware安装Redhat6.5
查看>>
AI自主决策——有限状态机
查看>>
iframe父子窗口取值
查看>>
利用Python进行数据分析_Pandas_数据结构
查看>>